

Tetrahedron 59 (2003) 1917-1923

TETRAHEDRON

SmI₂ mediated synthesis of 2,3-disubstituted indole derivatives

Xuesen Fan^{a,b} and Yongmin Zhang^{a,c,*}

^aDepartment of Chemistry, Zhejiang University (Campus Xixi), Hangzhou 310028, People's Republic of China

^bDepartment of Chemistry, Henan Normal University, Xinxiang 453002, People's Republic of China

^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai

200032, People's Republic of China

Received 6 November 2002; revised 2 January 2003; accepted 23 January 2003

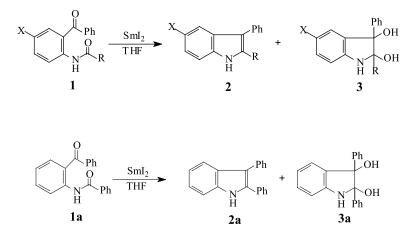
Abstract—A novel preparation of 2,3-disubstituted indole derivatives was achieved through SmI_2 induced intramolecular reductive coupling reactions of acylamido carbonyl compounds. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The substituted indole nucleus is prevalent in natural products¹ and important in medicinal chemistry.² Many procedures have been reported for the preparation of indoles,³ among them, the Fischer indole synthesis is the most commonly used route and has been extensively reviewed.⁴ Bischler synthesis⁵ and Madelung synthesis⁶ are also popular routes for indole synthesis. Recently, Furstner has reported that indoles can also be obtained through low-valent titanium induced intramolecular McMurry type reactions of suitably substituted acylamido carbonyl compounds.⁷ However, due to the unavailability of some patterns of indole substitution using classical methods and the need for efficient ways to synthesize more elaborate structures possessing biological activity, the development of novel and convenient methods for the preparation of indole derivatives still remains an active research area.⁸

Since pioneering work by Kagan and following investigation by other scientists, samarium(II) iodide has been shown to be an exceptionally efficient reagent for the promotion of reductive coupling reactions.⁹ For instance, pinacol coupling reactions,¹⁰ ketyl-olefin coupling reactions,¹¹ ketone-nitrile cross-coupling reactions¹² and ketone-ester reductive coupling reactions¹³ have been reported using SmI₂ as the reagent. Recently we have also reported that SmI₂ together with metallic samarium can promote the intermolecular deoxygenative coupling reaction of diarylketones and *N*,*N*-disubstituted arylamides to give enamines under reflux conditions.¹⁴ Unfortunately, this process necessitates the use of excessive amounts of metallic samarium and is only suitable for *N*,*N*-disubstituted arylamides and failed with alkylamides. Herein we wish to report that SmI_2 can efficiently promote the intramolecular reductive coupling reactions of suitably substituted acylamido carbonyl compounds (1) to give 2,3disubstituted indoles (2) or 2,3-disubstituted-2,3-dihydro-1H-indole-2,3-diols (3) as the main products depending on the starting materials, the reaction temperature and the amount of SmI_2 used (shown in Scheme 1).

2. Results and discussion


2.1. SmI₂ induced intramolecular reductive coupling reactions of 2-arylamidobenzophenone

When 1 equiv. of 2-benzamidobenzophenone (Scheme 2, 1a) was added to 2 equiv. of SmI_2 as THF solution at room temperature, the deep blue color of the solution turned into yellow immediately. The reaction process was monitored by TLC and it showed that substrate 1a has been consumed within several minutes. From the reaction mixture, two products were obtained, which were then identified as 2a and 3a in a ratio of about 1–3 with an overall yield of 87%. It was not a very exciting result in terms of chemoselectivity. Fortunately, further studies using 1a as a model substrate showed that the ratio of the two products could be controlled by varying the reaction temperature and the amount of SmI_2 used. The results are listed in Table 1.

From Table 1 it can be seen that the reaction temperature and the amount of SmI_2 used have significant effects on the distribution of the two products. While higher reaction temperature and a larger amount of SmI_2 used are in favor of the formation of **2a**, in fact, it turned out that **2a** was the only product with as high as 85% yield when the reaction was conducted at 65°C with 4 equiv. of SmI_2 for half an hour (Table 1, entry 7). Diol **3a** could also be isolated as the main product with a yield of 72% by treating **1a** with two equiv.

Keywords: samarium(II) iodide; indole derivatives; reductive coupling. * Corresponding author; e-mail: yminzhang@mail.hz.zj.cn

^{0040–4020/03/\$ -} see front matter @ 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4020(03)00143-1

Scheme 2.

Scheme 1.

of SmI₂ at -20° C for 5 min (Table 1, entry 10). That is to say by varying the reaction temperature and the amount of SmI₂, either **2a** or **3a** can be obtained as the main or only product. However, attempts to conduct the process at lower temperature with intention to obtain more amount of **3a** gave us a disappointing result. In fact, neither the ratio of **3a**

Table 1. Screening of different reaction temperature and the amount of ${\rm SmI}_2$ for the preparation of indole derivatives from oxo amide 1a

Entry	Reaction temp. (°C)	Molar ratio (SmI ₂ /1a)	Reaction time (min)	Yield (%) ^a	
				2a	3a
1	rt	2	5	22	65
2	rt	3	5	35	47
3	rt	4	5	56	28
4	65	2	5	34	52
5	65	4	5	78	7
6	65	4	10	82	4
7	65	4	30	85	-
8	0	2	5	18	64
9	-10	2	5	12	71
10	-20	2	5	10	72
11	-30	2	5	10	73

^a Isolated yields based on 1a.

Table 2. SmI₂ induced preparation of indole derivatives from oxo N-aryl amides

to **2a** nor the overall yield could be further improved at a lower temperature (Table 1, entry 11).

Other substrates derived from 2-aminobenzophenones and various aroyl chlorides have also been investigated, the results are listed in Table 2.

From Table 2, we found that when suitably substituted aryl acylamido carbonyl compounds (1a-g) were treated with SmI₂ under suitable reaction conditions, the corresponding indole derivatives (2) or (3) were obtained in fair yields. When the reductive coupling process was conducted at 65°C with 4 equiv. of SmI_2 , only 2a-g were obtained in fair yields for all the substrates tested. On the other hand, 3a-gwere separated as the main products when the reaction was carried out at -20° C in the presence of 2 equiv. of SmI₂. This reductive coupling process went very rapidly and was completed within several minutes for the preparation of 3, or less than an hour for the formation of 2. In addition, the results in Table 2 also show that substrates bearing either electron donating or electron withdrawing groups underwent the reductive coupling smoothly under the same reaction conditions. The absence of observable substituent effects and the chemo-selectivity, in that reducible groups

Entry	Substrates	Х	R	Molar ratio (SmI ₂ /substrate)	Reaction temp. (°C)	Reaction time (min)	Yield (%) ^a	
							2	3
1	1a	Н	C ₆ H ₅	4	65	30	85	_
				2	-20	5	10	72
2	1b	Н	4-CH ₃ C ₆ H ₄	4	65	30	84	_
				2	-20	5	10	73
3	1c	Н	$4-ClC_6H_4$	4	65	50	88	_
			0.1	2	-20	5	8	75
4	1d	Cl	C_6H_5	4	65	30	88	_
				2	-20	5	12	71
5	1e	Cl	4-CH ₃ C ₆ H ₄	4	65	30	84	_
				2	-20	5	11	70
6	1f	Cl	4-ClC ₆ H ₄	4	65	40	87	_
			0.1	2	-20	5	9	70
7	1g	Cl	$4-FC_6H_4$	4	65	50	85	_
	5		0 1	2	-20	5	9	74

^a Isolated yields based on 1.

1918

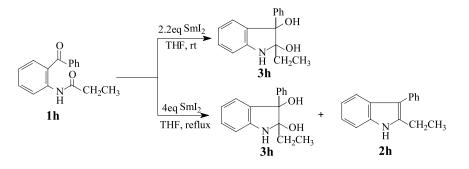
Scheme 3.

such as chloro, fluoro groups remain unaffected, suggest that this be a general method for the preparation of 2,3disubstituted indole derivatives.

Although the detailed mechanism of the above reaction has not been clarified yet, a plausible mechanism (shown in Scheme 3) for the formation of 2,3-disubstituted indoles may be proposed as follows.

Firstly, ketyl anion **A** may be formed through a SmI₂ induced SET (single electron transfer) process. Then, the formed radical anion **A** can be reduced further to the corresponding dianion (**B**), due to their favorable electrochemical reduction potential.^{7,15} Once formed, such highly reactive dianions once formed readily attack the adjacent amide group to form a new C–C bond giving intermediate **C**. Subsequent deoxygenation of **C** in the presence of SmI₂ affords **2** as the final product. On the other hand, if the reaction is conducted at -20° C with only 2 equiv. of SmI₂, the reductive process may mainly stopped at the pinacolates (**C**) stage. Subsequent protonation of intermediate **C** affords **3** as the major product together with little amount of **2**.

2.2. SmI₂ induced intramolecular reductive coupling reactions of 2-alkylamidobenzophenones


As mentioned above, although SmI₂, together with metallic samarium, can promote the intermolecular deoxygenative coupling reaction of diarylketones and N,N-disubstituted arylamides to give enamines, this system failed with alkylamides. In fact, on treatment with the SmI₂/Sm system, N,N-diethylhexanoamide and benzophenone gave a com-

plex mixture rather than the desired enamines.¹⁴ Therefore it is of interest to investigate whether substrates **1** derived from 2-aminobenzophenones and acyl chlorides (such as acetyl chloride and propionyl chloride) can undergo the similar reductive coupling process to give the desired indole derivatives.

Fortunately, when N-(2-benzoylphenyl)-propionamide (1h, Scheme 4) was treated with 2 equiv. of SmI_2 at room temperature (Table 3, entry 1), it was consumed in a few minutes and only one product was obtained, which was identified as 2-ethyl-3-phenyl-2,3-dihydro-1H-indole-2,3diol (**3h**) based on its spectra data (IR, ¹H NMR, ¹³C NMR, MS and elemental analysis). This result is different from the results in relation to 1a-g derived from 2-aminobenzophenones and aroyl chlorides, from which both products 2 and 3 were obtained under similar reaction conditions. However, when **1h** was treated with 4 equiv. of SmI_2 under reflux condition for one hour (Table 3, entry 2), both 3h and 2h were obtained with yields of 32% and 40%, respectively. Further investigation showed that a greater amount of SmI₂, or prolonged reaction time could not significantly improve the yield of **2h** (Table 3, entries 3 and 4). Substrates derived from 2-aminobenzophenones and other acyl chlorides have also been investigated, the results are listed in Table 3.

3. Conclusion

We have presented a novel process toward 2,3-disubstituted indole derivatives. With its high yields, mild and neutral conditions, the present work may provide a useful

1919

Entry	Substrates	Х	R	Molar ratio (SmI ₂ /substrates)	Reaction temp. (°C)	Reaction time (min)	Yield (%) ^a	
							2	3
1	1h	Н	CH ₂ CH ₃	2	rt	5	_	78
2	1h	Н	CH ₂ CH ₃	4	65	60	40	32
3	1h	Н	CH ₂ CH ₃	4	65	120	42	33
4	1h	Н	CH ₂ CH ₃	6	65	60	43	31
5	1i	Н	CH ₃	4	65	60	38	35
6	1i	Н	CH ₃	2	rt	5	_	81
7	1j	Cl	CH ₂ CH ₃	4	65	60	43	32
8	1j	Cl	CH ₂ CH ₃	2	rt	5	_	75
9	1k	Cl	CH ₃	4	65	60	43	30
10	1k	Cl	CH ₃	2	rt	5	_	72

Table 3. SmI₂ induced preparation of indole derivatives from oxo *N*-alkyl amides

^a Isolated yields based on **1**.

alternative for the construction of the substituted indole nucleus. Further studies to clarify the mechanism of this process and to develop other new uses of SmI_2 in the syntheses of heterocyclic compounds are now in progress in our laboratory.

4. Experimental

Tetrahydrofuran was distilled from sodium-benzophenone immediately prior to use. All reactions were conducted under a nitrogen atmosphere. Melting points are uncorrected. ¹H NMR spectra were recorded on a Bruker AC-400 instrument as CDCl₃ solutions using TMS as an internal standard. ¹³C NMR spectra were recorded on a Bruker AC-100 instrument as CDCl3 solutions using TMS as an internal standard. Chemical shifts (δ) are reported in ppm and coupling constants J are given in Hz. IR spectra were taken as KBr discs or thin films with a Bruker Vector-22 infrared spectrometer. Elemental analyses were performed on an EA-1110 instrument. Metallic samarium and all solvents were purchased from commercial sources and were used without further purification. The starting material acylamido carbonyl compounds 1 were prepared according to the literature.¹⁶

4.1. General procedure for the preparation of 2,3-diaryl-1H-indole (2a-g)

Under anhydrous conditions, a mixture of powdered samarium (0.60 g, 4 mmol) and iodine (1.00 g, 4 mmol) in dry THF (20 mL) was stirred at room temperature until the samarium disappeared. To the resulting dark blue suspension of SmI₂ was added **1** (1 mmol). The mixture was stirred at 65°C for the time shown in Table 2. The reaction mixture was then poured into H₂O (10 mL) and extracted with ethyl acetate (3×15 mL). The combined extracts were washed subsequently with a saturated solution of Na₂S₂O₃ (15 mL) and a saturated solution of NaCl (15 mL) and dried over anhydrous Na₂SO₄. After evaporating the solvent under reduced pressure, the crude product was purified by preparative TLC on silica gel using ethyl acetate–cyclohexane (1:7) as eluent.

4.1.1. 2,3-Diphenylindole (**2a**). Colorless crystal, yield: 85%, mp 121–123°C (lit.,^{7a} 122–124°C); IR (KBr) ν 3410, 1605, 1516, 1486; ¹H NMR δ 8.36 (br s, 1H, NH), 7.83 (d,

1H, *J*=8.4 Hz), 7.28–7.68 (m, 13H). MS *m*/*z* (%): 269 (M⁺, 100).

4.1.2. 2-(4-Methylphenyl)-3-phenylindole (2b). Syrup, yield: 84%; IR ν 3409, 1602, 1514, 1487 cm⁻¹; ¹H NMR δ 8.44 (br s, 1H, NH), 7.85 (d, 1H, *J*=8.0 Hz), 7.60 (d, 2H, *J*=8.0 Hz), 7.30–7.53 (m, 8H), 7.21 (d, 2H, *J*=8.0 Hz), 2.47 (s, 3H); ¹³C NMR δ 21.4, 111.1, 114.7, 119.8, 120.6, 122.7, 126.4, 128.3, 128.7, 129.0, 129.9, 130.4, 134.5, 135.5, 136.0, 137.7; MS *m*/*z* (%): 283 (M⁺, 100). Anal. Calcd for C₂₁H₁₇N: C, 89.01; H, 6.05; N, 4.94. Found: C, 88.90; H, 6.15; N, 4.88.

4.1.3. 2-(4-Chlorophenyl)-3-phenylindole (**2c).** Syrup, yield: 88%; IR ν 3408, 1605, 1510, 1480; ¹H NMR δ 8.30 (br s, 1H, NH), 7.62 (d, 1H, *J*=8.4 Hz), 7.50–7.25 (m, 10H), 7.11–7.01 (m, 2H); ¹³C NMR δ 111.2, 115.0, 119.8, 120.6, 122.9, 126.5, 128.5, 128.7, 129.5, 129.9, 130.3, 131.1, 134.5, 135.5, 136.0, 137.7; MS *m*/*z* (%): 305 (M⁺+2, 34), 303 (M⁺, 100). Anal. Calcd for C₂₀H₁₄ClN: C, 79.07; H, 4.65; N, 4.61. Found: C, 79.12; H, 4.68; N, 4.63.

4.1.4. 5-Chloro-2,3-diphenylindole (2d). Colorless crystal, yield: 88%, mp 124–126°C; IR (KBr) ν 3438, 1601, 1505, 1460; ¹H NMR δ 8.62 (br s, 1H, NH), 7.61 (d, 1H, *J*=1.5 Hz), 7.34–7.60 (m, 6H), 7.22–7.28 (m, 5H), 7.14–7.16 (m, 1H); ¹³C NMR δ 111.9, 119.1, 122.9, 126.1, 126.6, 128.0, 128.2, 128.7, 128.8, 129.9, 130.1, 132.3, 134.4, 134.6, 135.6; MS *m*/*z* (%): 305 (M⁺+2, 34), 303 (M⁺, 100). Anal. Calcd for C₂₀H₁₄ClN: C, 79.07; H, 4.65; N, 4.61. Found: C, 79.12; H, 4.68; N, 4.63.

4.1.5. 5-Chloro-2-(4-methylphenyl)-3-phenylindole (2e). Colorless crystal, yield: 84%, mp 140–142°C; IR ν 3411, 1602, 1514, 1489; ¹H NMR δ 8.14 (br s, 1H, NH), 7.58 (d, 1H, *J*=1.4 Hz), 7.27–7.37 (m, 10H), 7.16–7.19 (m, 1H), 2.36 (s, 3H); ¹³C NMR δ 21.6, 111.6, 114.6, 119.2, 122.8, 126.1, 126.5, 128.0, 128.3, 128.6, 128.8, 129.8, 130.1, 132.5, 134.6, 134.8, 135.3; MS *m*/*z* (%): 319 (M⁺+2, 34), 317 (M⁺, 100). Anal. Calcd for C₂₁H₁₆ClN: C, 79.36; H, 5.07; N, 4.41. Found: C, 79.32; H, 5.14; N, 4.48.

4.1.6. 5-Chloro-2-(4-chlorophenyl)-3-phenylindole (2f). Colorless crystal, yield: 87%, mp 161–162°C; IR (KBr) ν 3410, 1602, 1525, 1499; ¹H NMR δ 8.23 (br s, 1H, NH), 7.60 (d, 1H, *J*=1.4 Hz), 7.28–7.41 (m, 10H), 7.18–7.20 (m, 1H); ¹³C NMR δ 112.1, 119.3, 123.3, 126.4, 126.9, 128.8, 129.1, 129.4, 129.9, 130.0, 130.7, 134.0, 134.1, 135.6, 136.0; MS m/z (%): 339 (M⁺+2, 66), 337 (M⁺, 100). Anal. Calcd for C₂₀H₁₃Cl₂N: C, 71.02; H, 3.87; N, 4.14. Found: C, 71.20; H, 3.75; N, 4.20.

4.1.7. 5-Chloro-2-(4-fluorophenyl)-3-phenylindole (2g). Colorless crystal, yield: 85%, mp 146–148°C; IR (KBr) ν 3416, 1602, 1516, 1497; ¹H NMR δ 8.17 (br s, 1H, NH), 7.62 (s, 1H), 7.28–7.41 (m, 8H), 7.18–7.20 (m, 1H), 6.99–7.03 (m, 2H); ¹³C NMR δ 111.9, 114.8, 115.8, 116.0, 119.2, 123.1, 126.3, 126.7, 128.3, 128.4, 128.8, 129.8, 129.9, 130.0, 134.2, 134.3, 134.5, 161.3, 163.7; MS *m*/*z* (%): 323 (M⁺+2, 34), 321 (M⁺, 100). Anal. Calcd for C₂₀H₁₃CIFN: C, 74.65; H, 4.07; N, 4.35. Found: C, 74.52; H, 4.21; N, 4.26.

4.2. General procedure for the preparation of 2,3-diaryl-2,3-dihydro-1H-indole-2,3-diol (3a-g)

To a dark blue suspension of SmI_2 (2 mmol) in THF (cooled to $-20^{\circ}C$) was added 1 (1 mmol). The mixture was stirred at this temperature for 5 min. The reaction mixture was then poured into H₂O (15 mL) and extracted with diethyl ether (3×30 mL). The combined extracts were washed subsequently with a saturated solution of Na₂S₂O₃ (15 mL) and a saturated solution of NaCl (15 mL) and dried over anhydrous Na₂SO₄. After evaporating the solvent under reduced pressure, the crude product was purified by preparative TLC on silica gel using ethyl acetate–cyclohexane (1:3) as eluent.

4.2.1. 2,3-Diphenyl-2,3-dihydro-1H-indole-2,3-diol (3a). Colorless crystal, yield: 72%, mp 152–154°C; IR ν 3395, 3315, 1658, 1580 cm⁻¹; ¹H NMR δ 9.78 (br s, 1H, NH), 8.20 (d, 1H, *J*=8.0 Hz), 7.62 (d, 2H, *J*=7.8 Hz), 7.42 (d, 1H, *J*=7.2 Hz), 7.26–7.32 (m, 8H), 7.01–7.20 (m, 2H), 5.86 (s, 1H), 4.83 (s, 1H); ¹³C NMR δ 72.6, 126.0, 126.7, 127.5, 127.7, 127.9, 128.1, 128.6, 129.1, 129.2, 132.4, 134.7, 135.6, 138.7, 143.4, 165.1; MS *m/z* (%): 303 (M⁺, 9), 286 (2), 198 (41), 182 (42), 180 (30), 105 (100), 77 (88). Anal. Calcd for C₂₀H₁₇NO₂: C, 79.19; H, 5.65; N, 4.62. Found: C, 79.23; H, 5.68; N, 4.58.

4.2.2. 2-(4-Methylphenyl)-3-phenyl-2,3-dihydro-1H-indole-2,3-diol (3b). Colorless crystal, yield: 73%, mp 168–170°C; IR ν 3410, 3320, 1656, 1580 cm⁻¹; ¹H NMR δ 9.92 (br s, 1H, NH), 7.98 (d, 1H, *J*=8.8 Hz), 7.64 (d, 2H, *J*=7.8 Hz), 7.28–7.45 (m, 8H), 7.15–7.20 (m, 2H), 6.66 (s, 1H), 5.70 (s, 1H), 2.37 (s, 3H); ¹³C NMR δ 23.6, 73.8, 126.1, 126.9, 127.5, 127.7, 128.0, 128.2, 128.9, 129.4, 129.8, 132.4, 135.2, 136.3, 139.9, 145.1, 165.6; MS *m/z* (%): 317 (M⁺, 7), 300 (2), 198 (20), 182 (22), 180 (15), 119 (100), 91 (85). Anal. Calcd for C₂₁H₁₉NO₂: C, 79.47; H, 6.03; N, 4.41. Found: C, 79.31; H, 5.96; N, 4.44.

4.2.3. 2-(4-Chlorophenyl)-3-phenyl-2,3-dihydro-1Hindole-2,3-diol (3c). Colorless crystal, yield: 75%, mp 185–186°C; IR ν 3425, 3310, 1660, 1580 cm⁻¹; ¹H NMR δ 10.06 (br s, 1H, NH), 8.15 (d, 1H, *J*=8.4 Hz), 7.68–7.75 (m, 2H), 7.28–7.38 (m, 7H), 7.16–7.20 (m, 3H), 6.65 (s, 1H), 5.86 (s, 1H); ¹³C NMR δ 73.2, 125.8, 126.8, 127.2, 127.8, 128.1, 128.9, 129.9, 130.4, 134.0, 135.5, 135.9, 140.6, 144.6, 168.2; MS *m/z* (%): 339 (M⁺+2, 3), 337 (M⁺, 9), 198 (23), 182 (20), 180 (18), 139 (100), 111(78). Anal. Calcd for C₂₀H₁₆ClNO₂: C, 71.11; H, 4.77; N, 4.15. Found: C, 71.26; H, 4.59; N, 4.06.

4.2.4. 5-Chloro-2,3-diphenyl-2,3-dihydro-1H-indole-2,3-diol (3d). Colorless crystal, yield: 73%, mp 152–154°C; IR ν 3403, 3317, 1653, 1578 cm⁻¹; ¹H NMR δ 10.26 (br s, 1H, NH), 7.90 (d, 1H, *J*=8.4 Hz), 7.79 (d, 2H, *J*=7.8 Hz), 7.60–7.51 (m, 4H), 7.40–7.20 (m, 6H), 6.78 (s, 1H), 6.01 (s, 1H); ¹³C NMR δ 72.6, 126.0, 126.7, 127.5, 127.7, 127.9, 128.1, 128.6, 129.1, 129.2, 132.4, 134.7, 135.6, 138.7, 143.4, 165.1; MS *m*/*z* (%): 339 (M⁺+2, 2), 337 (M⁺, 5), 232 (15), 216 (32), 214 (15), 105 (100), 77 (98). Anal. Calcd for C₂₀H₁₆ClNO₂: C, 71.11; H, 4.77; N, 4.15. Found: C, 71.15; H, 4.78; N, 4.13.

4.2.5. 5-Chloro-2-(4-methylphenyl)-3-phenyl-2,3-dihydro-1H-indole-2,3-diol (3e). Colorless crystal, yield: 70%, mp 174–176°C; IR ν 3406 3310, 1655, 1575 cm⁻¹; ¹H NMR δ 10.21 (br s, 1H, NH), 7.92 (d, 1H, *J*=8.8 Hz), 7.70 (d, 2H, *J*=7.8 Hz), 7.50 (s, 1H), 7.32–7.38 (m, 3H), 7.19–7.26 (m, 5H), 6.81 (s, 1H), 5.99 (s, 1H), 2.38 (s, 3H); ¹³C NMR δ 23.8, 72.5, 126.2, 126.8, 127.6, 127.7, 127.9, 128.4, 128.9, 129.5, 129.7, 133.2, 135.2, 136.4, 138.9, 143.4, 165.6; MS *m/z* (%): 351 (M⁺, 4), 232 (14), 216 (7), 214 (13), 119 (100), 91 (65). Anal. Calcd for C₂₁H₁₈ClNO₂: C, 71.69; H, 5.16; N, 3.98. Found: C, 71.63; H, 5.25; N, 4.14.

4.2.6. 5-Chloro-2-(4-chlorophenyl)-3-phenyl-2,3-dihydro-1H-indole-2,3-diol (3f). Colorless crystal, yield: 70%, mp 174–176°C; IR ν 3386, 1651, 1584 cm⁻¹; ¹H NMR δ 10.24 (br s, 1H, NH), 7.81–7.19 (m, 12H), 6.68 (s, 1H), 6.00 (s, 1H); ¹³C NMR δ 72.3, 126.6, 126.7, 127.7, 127.8, 127.9, 128.7, 129.2, 129.5, 129.6, 133.4, 136.1, 137.3, 139.6, 143.4, 164.3; MS *m*/*z* (%): 373 (M⁺+2, 1), 371 (M⁺, 2), 232 (18), 216 (39), 214 (18), 139 (100), 111 (58). Anal. Calcd for C₂₀H₁₅Cl₂NO₂: C, 64.53; H, 4.25; N, 3.94. Found: C, 64.28; H, 4.28; N, 3.88.

4.2.7. 5-Chloro-2-(4-fluorophenyl)-3-phenyl-2,3-dihydro-1H-indole-2,3-diol (3g). Colorless crystal, yield: 74%, mp 139–141°C; IR ν 3390, 1648, 1580 cm⁻¹; ¹H NMR δ 9.60 (br s, 1H, NH), 8.17 (d, 1H, *J*=8.4 Hz), 7.60–7.10 (m, 11H), 6.68 (s, 1H), 5.83 (s, 1H); ¹³C NMR δ 72.3, 115.9, 116.2, 126.4, 126.5, 126.7, 127.5, 127.7, 127.8, 128.7, 129.4, 130.2, 130.3, 131.1, 131.2, 136.2, 136.3, 139.4, 143.4, 163.4, 164.1, 165.9; MS *m*/*z* (%): 357 (M⁺+2, 1), 355 (M⁺, 3), 232 (11), 216 (28), 214 (16), 123 (100), 105 (32), 95 (63), 57 (55). Anal. Calcd for C₂₀H₁₅CIFNO₂: C, 67.52; H, 4.25; N, 3.94. Found: C, 67.38; H, 4.36; N, 4.05.

4.3. General procedure for the preparation of 2-alkyl-3aryl-2,3-dihydro-1H-indole-2,3-diol (3h-3k)

To a dark blue suspension of SmI_2 (2 mmol) in THF was added 1 (1 mmol). The mixture was stirred at room temperature for 5 min. At completion, the reaction mixture was poured into H₂O (15 mL) and extracted with diethyl ether (3×15 mL). The combined extracts were washed subsequently with a saturated solution of Na₂S₂O₃ (15 mL) and a saturated solution of NaCl (15 mL) and dried over anhydrous Na₂SO₄. After evaporating the solvent under reduced pressure, the crude product was purified by preparative TLC on silica gel using ethyl acetate-cyclohexane (1:3) as eluent.

4.3.1. 2-Ethyl-3-phenyl-2,3-dihydro-1H-indole-2,3-diol (**3h**). Colorless crystal, yield: 78%, mp 106–108°C; IR ν 3414, 3055, 2970, 1600 cm⁻¹; ¹H NMR δ 8.52 (br s, 1H, NH), 7.99 (d, 1H, *J*=8.4 Hz), 7.23–7.32 (m, 6H), 7.04–7.10 (m, 2H), 5.82 (s, 1H), 3.62 (s, 1H), 2.12 (q, 2H, *J*=7.2 Hz), 1.00 (t, 3H, *J*=7.2 Hz); ¹³C NMR δ 9.5, 30.7, 75.3, 123.2, 124.1, 126.1, 127.5, 128.7, 128.9, 132.5, 132.6, 136.6, 141.7, 172.6; MS *m/z* (%): 255 (M⁺, 15), 238 (9), 198 (48), 182 (73), 180 (100), 105 (57), 57 (56). Anal. Calcd for C₁₆H₁₇NO₂: C, 75.27; H, 6.71; N, 5.49. Found: C, 75.38; H, 6.66; N, 5.37.

4.3.2. 2-Methyl-3-phenyl-2,3-dihydro-1H-indole-2,3-diol (**3i**). Colorless crystal, yield: 81%, mp 96–98°C; IR ν 3332, 3064, 2958, 1589 cm⁻¹; ¹H NMR δ 8.81 (br s, 1H), 7.83 (d, 1H, *J*=8.4 Hz), 7.20–7.29 (m, 6H), 7.03–7.06 (m, 2H), 5.76 (s, 1H), 3.58 (s, 1H), 1.79 (s, 3H); ¹³C NMR δ 23.8, 74.1, 123.8, 125.1, 126.3, 127.8, 128.9, 130.1, 132.9, 132.5, 135.6, 140.2, 169.1; MS *m*/*z* (%): 241 (M⁺, 14), 224 (5), 198 (34), 182 (68), 180 (82), 105 (56), 43 (100). Anal. Calcd for C₁₅H₁₅NO₂: C, 74.67; H, 6.27; N, 5.80. Found: C, 74.49; H, 6.38; N, 5.69.

4.3.3. 5-Chloro-2-ethyl-3-phenyl-2,3-dihydro-1H-indole-2,3-diol (3j). Colorless crystal, yield: 75%, mp 120–122°C; IR ν 3418, 3057, 2971, 1602 cm⁻¹; ¹H NMR δ 8.48 (br s, 1H, NH), 7.98 (d, 1H, *J*=8.4 Hz), 7.36–7.10 (m, 7H), 5.80 (s, 1H), 3.72 (s, 1H), 2.14 (q, 2H, *J*=7.8 Hz), 1.02 (t, 3H, *J*=7.8 Hz); ¹³C NMR δ 9.4, 30.8, 74.9, 124.5, 126.1, 128.0, 128.6, 128.8, 129.2, 133.9, 135.2, 140.7, 172.4; MS *m*/*z* (%): 291 (M⁺+2, 9), 289 (M⁺, 25), 272 (10), 232 (13), 216 (69), 214 (100), 105 (51), 57 (74). Anal. Calcd for C₁₆H₁₆ClNO₂: C, 66.32; H, 5.57; N, 4.83. Found: C, 66.16; H, 5.72; N, 4.71.

4.3.4. 5-Chloro-2-methyl-3-phenyl-2,3-dihydro-1H-indole-2,3-diol (**3k**). Colorless crystal, yield: 72%, mp 140–142°C; IR ν 3355, 3015, 2966, 1590 cm⁻¹; ¹H NMR δ 8.46 (br s, 1H, NH), 7.92 (d, 1H, *J*=8.4 Hz), 7.38–7.11 (m, 7H), 5.81 (s, 1H), 3.66 (s, 1H), 1.82 (s, 3H); ¹³C NMR δ 24.3, 74.9, 124.7, 126.1, 128.1, 128.7, 128.8, 129.5, 134.3, 136.1, 140.7, 168.8; MS *m*/*z* (%): 277 (M⁺+2, 2), 275 (M⁺, 5), 258 (3), 232 (11), 216 (56), 214 (44), 105 (53), 43 (100). Anal. Calcd for C₁₅H₁₄CINO₂: C, 66.32; H, 5.57; N, 4.83. Found: C, 66.16; H, 5.72; N, 4.86.

4.4. General procedure for the preparation of 2-alkyl-3-aryl-1H-indole (2h-2k)

To a dark blue suspension of SmI_2 (4 mmol) in THF was added 1 (1 mmol). The mixture was stirred under reflux for 1 h. At completion, the reaction mixture was poured into H_2O (15 mL) and extracted with diethyl ether (3×30 mL). The combined extracts were washed subsequently with a saturated solution of Na₂S₂O₃ (15 mL) and a saturated solution of NaCl (15 mL) and dried over anhydrous Na₂SO₄. After evaporating the solvent under reduced pressure, the crude product was purified by preparative TLC on silica gel using ethyl acetate–cyclohexane (1: 4) as eluent. **4.4.1. 2-Ethyl-3-phenylindole (2h).** Syrup, yield: 32%; IR ν 3413, 3060, 2971, 1603, 1495; ¹H NMR, 7.93 (br s, 1H, NH), 7.76 (d, 1H, *J*=8.0 Hz), 7.53–7.61 (m, 4H), 7.36–7.42 (m, 2H), 7.18–7.29 (m, 2H), 2.92 (q, 2H, *J*=7.6 Hz), 1.35 (t, 3H, *J*=7.6 Hz); ¹³C NMR δ 14.5, 19.8, 110.7, 113.9, 119.1, 120.1, 121.7, 126.1, 128.1, 128.7, 129.7, 135.4, 135.6, 137.5; MS *m*/*z* (%): 221 (M⁺, 100). Anal. Calcd for C₁₆H₁₅N: C, 86.84; H, 6.83; N, 6.33. Found: C, 86.64; H, 6.95; N, 6.21.

4.4.2. 2-Methyl-3-phenylindole (2i). Colorless crystal, yield: 35%, mp 56–57°C (lit.,^{7a} 58–61°C); IR (KBr) ν 3405, 3038, 2965, 1603, 1556, 1489; ¹H NMR, 7.96 (br s, 1H, NH), 7.78 (d, 1H, *J*=8.0 Hz), 7.57–7.64 (m, 4H), 7.44–7.22 (m, 4H), 2.52 (s, 3H); MS *m*/*z* (%): 207 (M⁺, 100).

4.4.3. 5-Chloro-2-ethyl-3-phenylindole (2j). Syrup, yield: 32%, IR ν 3418, 3057, 2971, 1617, 1485; ¹H NMR, 7.99 (br s, 1H, NH), 7.68 (d, 1H, *J*=1.6 Hz), 7.50–7.54 (m, 4H), 7.37–7.41 (m, 1H), 7.16–7.21 (m, 2H), 2.86 (q, 2H, *J*=8.0 Hz), 1.32 (t, 3H, *J*=8.0 Hz); ¹³C NMR δ 14.1, 18.7, 110.5, 113.4, 118.8, 120.5, 125.9, 127.6, 128.5, 128.9, 129.1, 134.3, 134.7, 136.8; MS *m*/*z* (%): 257 (M⁺+2, 34), 255 (M⁺, 100). Anal. Calcd for C₁₆H₁₄CIN: C, 75.14; H, 5.52; N, 5.48. Found: C, 75.30; H, 5.40; N, 5.58.

4.4.4. 5-Chloro-2-methyl-3-phenylindole (**2k**). Syrup, yield: 30%, IR ν 3415, 3026, 2965, 1604, 1497; ¹H NMR, 7.86 (br s, 1H, NH), 7.68 (d, 1H, *J*=1.5 Hz), 7.50–7.52 (m, 4H), 7.36–7.39 (m, 1H), 7.19–7.13 (m, 2H), 2.45 (s, 3H); ¹³C NMR δ 12.5, 111.5, 114.4, 118.3, 121.7, 125.7, 126.3, 128.8, 129.1, 129.4, 133.3, 133.7, 134.8; MS *m*/*z* (%): 243 (M⁺+2, 32), 241 (M⁺, 100). Anal. Calcd for C₁₅H₁₂CIN: C, 74.53; H, 5.00; N, 5.79. Found: C, 74.35; H, 5.16; N, 5.82.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Project No. 20072033) and the NSF of Zhejiang province for financial support.

References

- Saxton, J. E. *The Chemistry of Heterocyclic Compounds*; Wiley: New York, 1983; Vol. 25. Part IV.
- (a) Iyengar, B. S.; Remers, W. A.; Catino, J. J. J. Med. Chem. 1989, 32, 1866.
 (b) Bianucci, A. M.; Da Settimo, A.; Primofiore, G.; Martini, C.; Giannaccini, G.; Lucacchini, A. J. Med. Chem. 1992, 35, 2214.
 (c) Dhanoa, D. S.; Bagley, S. W.; Chang, R. S. L.; Lotti, V. J.; Chen, T.-B.; Kivlighn, S. D.; Zingaro, G. J.; Siegl, P. K. S.; Patchett, A. A.; Greemlee, W. J. J. Med. Chem. 1993, 36, 4230.
- (a) Sundberg, R. J. Comprehensive Heterocyclic Chemistry; Clive, W. B., Cheeseman, G. W. H., Eds.; Pergamon: Oxford, 1984; Vol. 4, pp 313–368. (b) Pindur, U.; Adam, R. J. Heterocycl. Chem. 1988, 25, 1. (c) Dopp, H.; Dopp, D.; Langer, U.; Gerding, B. Houben-Weyl, Thieme: Stuttgart 1994; Vol. E6b2. pp 546. (d) Sundberg, R. J. Indoles; Academic: New York, 1996. (e) Joule, J. A. In Indoles. Science of Synthesis; Thomas, E. J., Ed.; Georg Thieme:

Stuttgart, New York, 2000; Vol. 10, pp 361–652. (f) Gribble, G. W. *J. Chem. Soc., Perkin Trans. 1* **2000**, 1261.

- (a) Robinson, B. Chem. Rev. 1963, 63, 373. (b) Robinson, B. Chem. Rev. 1969, 69, 227.
- Remers, W. A. *Heterocyclic Compounds*; Houlihan, W. J., Ed.; Wiley: New York, 1972; Vol. 25, p 317.
- Remers, W. A. *Heterocyclic Compounds*; Houlihan, W. J., Ed.; Wiley: New York, 1972; Vol. 25, p 385.
- (a) Furstner, A.; Jumbam, D. N. *Tetrahedron* **1992**, *48*, 5991.
 (b) Furstner, A.; Hupperts, A.; Ptock, A.; Janssen, E. J. Org. Chem. **1994**, *59*, 5215.
 (c) Furstner, A.; Hupperts, A. J. Am. Chem. Soc. **1995**, *117*, 4468.
 (d) Furstner, A.; Ernst, A.; Krause, H.; Ptock, A.; Hupperts, A. *Tetrahedron* **1996**, *52*, 7329.
- (a) Seble, W.; Bryant, H. Y.; Stephen, L. B. J. Am. Chem. Soc. 1998, 120, 6621. (b) Seble, W.; Bryant, H. Y.; Stephen, L. B. J. Am. Chem. Soc. 1999, 121, 10251. (c) Bjorn, C. S.; James, A. S. J. Org. Chem. 1997, 62, 5838. (d) Miyashita, K.; Kondoh, K.; Tsuchiya, K.; Miyabe, H.; Imanishi, T. J. Chem. Soc., Perkin Trans. 1996, 1, 1261. (e) Katritzky, A. R.; Li, J. Q.; Stevens, C. V. J. Org. Chem. 1995, 60, 3401.
- For reviews see: (a) Krief, A.; Laval, A. M. Chem. Rev. 1999, 99, 745. (b) Molander, G. A. Acc. Chem. Res. 1998, 31, 603.
 (c) Molander, G. A.; Harris, C. R. Tetrahedron 1998, 54, 3321.
 (d) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307.
 (e) Imamota, T. Lanthanides in Organic Synthesis; Academic: London, 1994; Chapter 4. (f) Molander, G. A. Chem. Rev. 1992, 92, 29. (g) Curran, D. P.; Fevig, T. L.; Jasperse, C. P.; Totleben, M. J. Synlett 1992, 943.
- 10. Namy, J. L.; Kagan, H. B. Tetrahedron Lett. 1983, 24, 765.
- 11. Fukuzawa, S.; Nakanishi, A.; Fujinami, T.; Sakai, S. J. Chem. Soc., Chem. Commun. 1986, 624.
- Zhou, L. H.; Zhang, Y. M.; Shi, D. Q. Tetrahedron Lett. 1998, 39, 8491.
- 13. Liu, Y. K.; Zhang, Y. M. Tetrahedron Lett. 2001, 42, 5745.
- 14. Xu, X. L.; Zhang, Y. M. Tetrahedron 2002, 58, 503.
- Meites, L. *Polarographic Techniques*; 2nd ed. Interscience: New York, 1965.
- 16. Kashima, C. J. Org. Chem. 1975, 40, 526.